Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5026096 | Optik - International Journal for Light and Electron Optics | 2017 | 8 Pages |
Abstract
Expanding the ordinary Dirac's equation in quaternionic form yields Maxwell-like field equations. As in the Maxwell's formulation, the particle fields are represented by a scalar, Ï0 and a vector Ïâ. The analogy with Maxwell's equations requires that the inertial fields are EâD=c2αâÃÏâ, and BâD=αâÏ0+cβÏâ and that Ï0=âcβαâ·Ïâ, where β, αâ and c are the Dirac matrices and the speed of light, respectively. An alternative solution suggests that magnetic monopole-like behavior accompanies Dirac's field. In this formulation, a field-like representation of Dirac's particle is derived. It is shown that when the vector field of the particle, Ïâ, is normal to the vector αâ, Dirac's field represents a medium with maximal conductivity. The energy flux (Poynting vector) of the Dirac's fields is found to flow in opposite direction to the particle's motion. A system of equivalently symmetrized Maxwell's equations is introduced. A longitudinal (scalar) wave traveling at speed of light is found to accompany magnetic charges flow. This wave is not affected by presence of electric charges and currents. The Lorentz boost transformations of the matter fields are equivalent to cÏââ²=cÏâ±βαâÏ0,Ï0â²=Ï0âcβαâ·Ïâ.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
A.I. Arbab,