Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5033696 | International Journal of Research in Marketing | 2016 | 59 Pages |
Abstract
Via extensive simulations, we find that sampling methods differ substantially in their ability to recover network characteristics. Traditional sampling procedures, such as random node sampling, result in poor subgraphs. When the focus is on understanding local network effects (e.g., peer influence) then forest fire sampling with a medium burn rate performs the best, i.e., it is most effective for recovering the distributions of degree and clustering coefficient. When the focus is on global network effects (e.g., speed of diffusion, identifying influential nodes, or the “multiplier” effects of network seeding), then random-walk sampling (i.e., forest-fire sampling with a low burn rate) performs the best, and it is most effective for recovering the distributions of betweenness and closeness centrality. Further, we show that accurate recovery of social network structure in a sample is important for inferring the properties of a network process, when one observes only the process in the sampled network. We validate our findings on four different real-world networks, including a Facebook network and a co-authorship network, and conclude with recommendations for practice.
Keywords
Related Topics
Social Sciences and Humanities
Business, Management and Accounting
Marketing
Authors
Peter Ebbes, Zan Huang, Arvind Rangaswamy,