Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
504199 | Computerized Medical Imaging and Graphics | 2012 | 10 Pages |
Iterative cross-correlation (ICC) is the most popularly used schema for correcting eddy current (EC)-induced distortion in diffusion-weighted imaging data, however, it cannot process data acquired at high b-values. We analyzed the error sources and affecting factors in parameter estimation, and propose an efficient algorithm by expanding the ICC framework with a number of techniques: (1) pattern recognition for excluding brain ventricles; (2) ICC with the extracted ventricle for parameter initialization; (3) gradient-based entropy correlation coefficient (GECC) for optimal and finer registration. Experiments demonstrated that our method is robust with high accuracy and error tolerance, and outperforms other ICC-family algorithms and popular approaches currently in use.