Article ID Journal Published Year Pages File Type
504232 Computerized Medical Imaging and Graphics 2012 10 Pages PDF
Abstract

Modeling organ deformation in real remains a challenge in virtual minimally invasive (MIS) surgery simulation. In this paper, we propose a new hybrid deformable model to simulate deformable organs in the real-time surgical training system. Our hybrid model uses boundary element method (BEM) to compute global deformation based on a coarse surface mesh and uses a mass-spring model to simulate the dynamic behaviors of soft tissue interacting with surgical instruments. The simulation result is coupled with a high-resolution rendering mesh through a particle surface interpolation algorithm. Accurate visual and haptic feedbacks are provided in real time and temporal behaviors of biological soft tissues including viscosity and creeping are modeled as well. We prove our model to be suitable to work in complex virtual surgical environment by integrating it into a MIS training system. The hybrid model is evaluated with respect to efficiency, accuracy and robustness by a series of experiments.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,