Article ID Journal Published Year Pages File Type
504395 Computerized Medical Imaging and Graphics 2009 11 Pages PDF
Abstract

In positron emission tomography, transmission scans can be performed to estimate attenuation correction factors (ACFs) which are in turn used to correct the emission scans. And such an attenuation correction is crucial for quantitatively accurate PET reconstructions. The prior model used in this work was based on our assumption that the attenuation values vary smoothly, with occasional discontinuities at anatomical borders. And on the other hand, long acquisition or scan times, although alleviating the noise effect of the count-limited scans, are blamed for patient uncomfortableness and movements. So, transmission tomography often suffers from the noise effect because of the short scan time. Thus reconstruction which is capable of overcoming the noise effect is highly needed. In this article, we apply the nonlocal prior Bayesian reconstruction method in PET transmission tomography. Resulting experimentations validate that the reconstructions using the nonlocal prior can reconstruct better transmission images and overcome noise effect even when the scan time is relatively short.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,