Article ID Journal Published Year Pages File Type
504427 Computerized Medical Imaging and Graphics 2009 7 Pages PDF
Abstract

The precision and accuracy of human cortical bone reconstruction using 3D CT scans was evaluated using machined bone segments. Both linear and angular errors were measured. Cadaver adult femoral and tibial cortical bone segments were obtained and machined in six orthogonal planes with a precision milling machine. CT scans were then obtained and the bone segments were reconstructed as digital replicas. Dimensional and angular measurements errors were evaluated for the machined bone segments and the results were compared with known dimensions based on milling machine settings to calculate errors due to scanning and model reconstruction. The model dimensional error in the coronal, sagittal and axial directions had a mean of 0.21 mm, with standard a deviation of 0.12 mm and a maximum error of 0.47 mm. The mean percent error was 0.74% and the maximum percent error was 1.9%. The angular error of models in the coronal, sagittal and axial directions was calculated, yielding a mean of 0.47° with a standard deviation of 0.37° and a maximum of 1.33°. The error in the cross-sectional axial direction had a mean of 0.54 mm with a maximum error of 0.83 mm, depending on the slice interval. The main error source was of the image processing, which was about 70% of the total error. We found that machining cortical bone segments prior to CT scanning is an effective method for accuracy evaluation of CT-based bone reconstruction. This method can provide a reference for assessing the sensitivity, reliability and accuracy of CT-based applications in the study of movement, finite element modeling, and prosthesis construction.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,