Article ID Journal Published Year Pages File Type
504830 Computers in Biology and Medicine 2016 10 Pages PDF
Abstract

•Identification of common methylation patterns across different cancer types.•Evidence for certain CpG being preferentially aberrantly methylated.•Characterisation of the CpGs that are and are not aberrantly methylated.•Data showing most CpG sites remain unmethylated in normal and cancerous cells.•Identification of the motifs and features that classify the CpG sites are identified.•The surrounding sequence has an influence on aberrant methylation.

This study identifies common methylation patterns across different cancer types in an effort to identify common molecular events in diverse types of cancer cells and provides evidence for the sequence surrounding a CpG to influence its susceptibility to aberrant methylation. CpG sites throughout the genome were divided into four classes: sites that either become hypo or hyper-methylated in a variety cancers using all the freely available microarray data (HypoCancer and HyperCancer classes) and those found in a constant hypo (Never methylated class) or hyper-methylated (Always methylated class) state in both normal and cancer cells. Our data shows that most CpG sites included in the HumanMethylation450K microarray remain unmethylated in normal and cancerous cells; however, certain sites in all the cancers investigated become specifically modified. More detailed analysis of the sites revealed that majority of those in the never methylated class were in CpG islands whereas those in the HyperCancer class were mostly associated with miRNA coding regions. The sites in the Hypermethylated class are associated with genes involved in initiating or maintaining the cancerous state, being enriched for processes involved in apoptosis, and with transcription factors predicted to bind to these genes linked to apoptosis and tumourgenesis (notably including E2F). Further we show that more LINE elements are associated with the HypoCancer class and more Alu repeats are associated with the HyperCancer class. Motifs that classify the classes were identified to distinguish them based on the surrounding DNA sequence alone, and for the identification of DNA sequences that could render sites more prone to aberrant methylation in cancer cells. This provides evidence that the sequence surrounding a CpG site has an influence on whether a site is hypo or hyper methylated.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,