Article ID Journal Published Year Pages File Type
505026 Computers in Biology and Medicine 2015 7 Pages PDF
Abstract

•This study proposes a novel electrocardiogram (ECG) parameterization algorithm.•An ECG cycle is optimally fit with a 20th order polynomial function.•The coefficients of the fitting function are used for efficient MI detection.

The electrocardiogram (ECG) is a biophysical electric signal generated by the heart muscle, and is one of the major measurements of how well a heart functions. Automatic ECG analysis algorithms usually extract the geometric or frequency-domain features of the ECG signals and have already significantly facilitated automatic ECG-based cardiac disease diagnosis. We propose a novel ECG feature by fitting a given ECG signal with a 20th order polynomial function, defined as PolyECG-S. The PolyECG-S feature is almost identical to the fitted ECG curve, measured by the Akaike information criterion (AIC), and achieved a 94.4% accuracy in detecting the Myocardial Infarction (MI) on the test dataset. Currently ST segment elongation is one of the major ways to detect MI (ST-elevation myocardial infarction, STEMI). However, many ECG signals have weak or even undetectable ST segments. Since PolyECG-S does not rely on the information of ST waves, it can be used as a complementary MI detection algorithm with the STEMI strategy. Overall, our results suggest that the PolyECG-S feature may satisfactorily reconstruct the fitted ECG curve, and is complementary to the existing ECG features for automatic cardiac function analysis.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , , , ,