Article ID Journal Published Year Pages File Type
505448 Computers in Biology and Medicine 2011 9 Pages PDF
Abstract

A new real-time implementation of a Dynamic Time Warping (DTW)-based classification scheme is presented here, and its performance evaluated on experimental data. Nine young adults were requested to perform instances of eight different purposeful movements described in the Wolf Motor Function Test, while wearing a three-axis accelerometer sensor placed on the inner forearm. Results include the correct recognition percentage, as compared to a classification scheme based on the traditional DTW measure, and the recognition percentage as a function of the time elapsed from the beginning of the performed movements. The Real-Time DTW basically performs with the same accuracy of the traditional DTW-based classification scheme (91.5% of correct recognition percentage), a figure that increases to 96.5% if the multidimensional scheme is adopted. Moreover, more than 60% of movements are correctly recognized before their end, thus setting the way for applications in rehabilitation and assistive technologies, where a real-time control scheme is able to interact with the user while the movement is being performed.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,