Article ID Journal Published Year Pages File Type
505540 Computers in Biology and Medicine 2008 14 Pages PDF
Abstract

Prediction of the transmembrane (TM) helices is important in the study of membrane proteins. A novel method to predict the location and length of both single and multiple TM helices in human proteins is presented. The proposed method is based on a combination of hydrophobicity and higher-order statistics, resulting in a TM prediction tool, namely K4HTMK4HTM. A training dataset of 117 human single TM proteins and two test-datasets containing 499 and 484 human single and multiple TM proteins, respectively, were drawn from the SWISS-PROT public database and used for the optimisation and evaluation of K4HTMK4HTM. Validation results showed that K4HTMK4HTM correctly predicts the entire topology for 99.68% and 93.08% of the sequences in the single and multiple test-datasets, respectively. These results compare favourably with existing methods, such as SPLIT4, TMHMM2, WAVETM and SOSUI, constituting an alternative approach to the TM helix prediction problem.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,