Article ID Journal Published Year Pages File Type
506152 Computers in Biology and Medicine 2008 12 Pages PDF
Abstract

We propose a fast path planning algorithm using multi-resolution path tree propagation and farthest visible point. Initial path points are robustly generated by propagating the path tree, and all internal voxels locally most distant from the colon boundary are connected. The multi-resolution scheme is adopted to increase computational efficiency. Control points representing the navigational path are successively selected from the initial path points by using the farthest visible point. The position of the initial path point in a down-sampled volume is accurately adjusted in the original volume. Using the farthest visible point, the number of control points is adaptively changed according to the curvature of the colon shape so that more control points are assigned to highly curved regions. Furthermore, a smoothing step is unnecessary since our method generates a set of control points to be interpolated with the cubic spline interpolation. We applied our method to 10 computed tomography datasets. Experimental results showed that the path was generated much faster than using conventional methods without sacrificing accuracy, and clinical efficiency. The average processing time was approximately 1 s when down-sampling by a factor of 2, 3, or 4. We concluded that our method is useful in diagnosing colon cancer using virtual colonoscopy.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,