Article ID Journal Published Year Pages File Type
5070 Biochemical Engineering Journal 2006 10 Pages PDF
Abstract

Transportation of bioartificial liver (BAL) device with viable cells and higher metabolic functions are necessary. The aim of this study is to evaluate hypothermic (4 °C) influence on the performance of hepatocyte-entrapped hollow fiber bioreactors, as well as the effects on cell function with or without medium supplement. Oxygen consumptions were stable at average of 15–25 mmHg per cartridge during 8 h normothermic incubation after cold-perfusion and cold-non-perfusion. All groups showed increase in glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH) level. Urea production and albumin synthesis were only slightly higher in cold-perfusion groups than that of the cold-non-perfusion groups and the control. There were no significant differences in the metabolic functions of bioreactors between each study groups during normothermic operation. Our study suggests that the use of a preliminary cold-storage step prior to normal culture condition or clinical therapy can prolong the transportation time without changing various functions of the BAL device.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , ,