Article ID Journal Published Year Pages File Type
507089 Computers & Geosciences 2013 11 Pages PDF
Abstract

Warming air temperatures in the Arctic are modifying the rates of thermokarst processes along Alaska's Arctic Coastal Plain. The Arctic Coastal Plain is dominated by thaw lakes. These kilometer-scale lakes are the most visible surface features in the region, and they provide important habitats for migratory birds. The lakes are formed by thermokarst processes, and are therefore susceptible to change as warming continues. We present a 1D numerical model of permafrost and subsidence processes in order to investigate the subsurface thermal impact of thaw lakes of various depths, and to evaluate how this impact might change in a warming climate. Currently, most thaw lakes in the region are shallow (<∼2 m deep), freeze to their base each winter, and are not underlain by permanently unfrozen ground (taliks). Field observations indicate that these shallow lakes have not greatly altered the thermal structure of the subsurface. Our model suggests that under a warming scenario, the number of lakes that do not freeze to their base during the winter, and are therefore underlain by taliks, will increase. Such changes could substantially alter the hydrology of the Arctic Coastal Plain.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,