| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 5072248 | Games and Economic Behavior | 2011 | 16 Pages | 
Abstract
												We study two-person extensive form games, or “matches,” in which the only possible outcomes (if the game terminates) are that one player or the other is declared the winner. The winner of the match is determined by the winning of points, in “point games.” We call these matches binary Markov games. We show that if a simple monotonicity condition is satisfied, then (a) it is a Nash equilibrium of the match for the players, at each point, to play a Nash equilibrium of the point game; (b) it is a minimax behavior strategy in the match for a player to play minimax in each point game; and (c) when the point games all have unique Nash equilibria, the only Nash equilibrium of the binary Markov game consists of minimax play at each point. An application to tennis is provided.
											Keywords
												
											Related Topics
												
													Social Sciences and Humanities
													Economics, Econometrics and Finance
													Economics and Econometrics
												
											Authors
												Mark Walker, John Wooders, Rabah Amir, 
											