Article ID Journal Published Year Pages File Type
507333 Computers & Geosciences 2014 9 Pages PDF
Abstract

•An improved algorithm for extracting 3D seismic discontinuity attribute.•Gray-level transformation helps re-characterize subtle seismic features.•Implementing Canny edge detector for efficient discontinuity detection.•Integrating discontinuity magnitude and azimuth for fracture characterization.

In a 3D seismic survey, detecting seismic discontinuities is vital to robust structural and stratigraphic analysis in the subsurface. Previous methods have difficulty highlighting subtle discontinuities from seismic data in cases where the local amplitude variation is of non-zero mean. This study proposes implementing a gray-level transformation and the Canny edge detector for improved imaging of discontinuities. Specifically, the new process transforms seismic signals to be of zero mean and helps amplify subtle discontinuities, leading to an enhanced visualization for structural and stratigraphic details. Applications to various 3D seismic datasets demonstrate that the new algorithm helps better define channels, faults, and fractures than the traditional similarity, amplitude gradient, and semblance attributes.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,