Article ID Journal Published Year Pages File Type
508315 Computers & Geosciences 2009 16 Pages PDF
Abstract

Total organic carbon (TOC) content present in reservoir rocks is one of the important parameters, which could be used for evaluation of residual production potential and geochemical characterization of hydrocarbon-bearing units. In general, organic-rich rocks are characterized by higher porosity, higher sonic transit time, lower density, higher γ-ray, and higher resistivity than other rocks. Current study suggests an improved and optimal model for TOC estimation by integration of intelligent systems and the concept of committee machine with an example from Kangan and Dalan Formations, in South Pars Gas Field, Iran. This committee machine with intelligent systems (CMIS) combines the results of TOC predicted from intelligent systems including fuzzy logic (FL), neuro-fuzzy (NF), and neural network (NN), each of them has a weight factor showing its contribution in overall prediction. The optimal combination of weights is derived by a genetic algorithm (GA). This method is illustrated using a case study. One hundred twenty-four data points including petrophysical data and measured TOC from three wells of South Pars Gas Field were divided into 87 training sets to build the CMIS model and 37 testing sets to evaluate the reliability of the developed model. The results show that the CMIS performs better than any one of the individual intelligent systems acting alone for predicting TOC.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,