Article ID Journal Published Year Pages File Type
5088418 Journal of Banking & Finance 2015 10 Pages PDF
Abstract

This note studies robust estimation of the autoregressive (AR) parameter in a nonlinear, nonnegative AR model driven by nonnegative errors. It is shown that a linear programming estimator (LPE), considered by Nielsen and Shephard (2003) among others, remains consistent under severe model misspecification. Consequently, the LPE can be used to test for, and seek sources of, misspecification when a pure autoregression cannot satisfactorily describe the data generating process, and to isolate certain trend, seasonal or cyclical components. Simple and quite general conditions under which the LPE is strongly consistent in the presence of serially dependent, non-identically distributed or otherwise misspecified errors are given, and a brief review of the literature on LP-based estimators in nonnegative autoregression is presented. Finite-sample properties of the LPE are investigated in an extensive simulation study covering a wide range of model misspecifications. A small scale empirical study, employing a volatility proxy to model and forecast latent daily return volatility of three major stock market indexes, illustrates the potential usefulness of the LPE.

Related Topics
Social Sciences and Humanities Economics, Econometrics and Finance Economics and Econometrics
Authors
,