Article ID Journal Published Year Pages File Type
5095628 Journal of Econometrics 2017 16 Pages PDF
Abstract
Using and extending fractional order statistic theory, we characterize the O(n−1) coverage probability error of the previously proposed (Hutson, 1999) confidence intervals for population quantiles using L-statistics as endpoints. We derive an analytic expression for the n−1 term, which may be used to calibrate the nominal coverage level to get O(n−3/2[log(n)]3) coverage error. Asymptotic power is shown to be optimal. Using kernel smoothing, we propose a related method for nonparametric inference on conditional quantiles. This new method compares favorably with asymptotic normality and bootstrap methods in theory and in simulations. Code is provided for both unconditional and conditional inference.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,