Article ID Journal Published Year Pages File Type
5097319 Journal of Econometrics 2008 24 Pages PDF
Abstract
We consider a semiparametric distributed lag model in which the “news impact curve” m is nonparametric but the response is dynamic through some linear filters. A special case of this is a nonparametric regression with serially correlated errors. We propose an estimator of the news impact curve based on a dynamic transformation that produces white noise errors. This yields an estimating equation for m that is a type two linear integral equation. We investigate both the stationary case and the case where the error has a unit root. In the stationary case we establish the pointwise asymptotic normality. In the special case of a nonparametric regression subject to time series errors our estimator achieves efficiency improvements over the usual estimators, see Xiao et al. [2003. More efficient local polynomial estimation in nonparametric regression with autocorrelated errors. Journal of the American Statistical Association 98, 980-992]. In the unit root case our procedure is consistent and asymptotically normal unlike the standard regression smoother. We also present the distribution theory for the parameter estimates, which is nonstandard in the unit root case. We also investigate its finite sample performance through simulation experiments.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,