Article ID Journal Published Year Pages File Type
5098 Biocybernetics and Biomedical Engineering 2016 9 Pages PDF
Abstract

Recognition of speech uttered by severe dysarthric speakers needs a robust learning technique. One of the commonly used generative model-based classifiers for speech recognition is a hidden Markov model. Generative model-based classifiers do not do well for overlapping classes and due to insufficient training data. Dysarthric speech is normally partial or incomplete that leads to improper learning of temporal dynamics. To overcome these issues, we focus on learning features for dysarthric speech recognition that involves recognizing the sequential patterns of varying length utterances. We propose a Generative Model-Driven Feature Learning based discriminative framework that maps the sequence of feature vectors to fixed dimension vector spaces induced by the generative models. The discriminative classifier is built in that vector space. The proposed HMM-based fixed dimensional vector representation provides better discrimination for dysarthric speech than the conventional HMM. We examine the performance of the proposed method to recognize the isolated utterances from the UA-Speech database. The recognition accuracy of the proposed model is better than the conventional hidden Markov model-based approach.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,