Article ID Journal Published Year Pages File Type
5102961 Physica A: Statistical Mechanics and its Applications 2017 12 Pages PDF
Abstract
Fractal is ubiquitous in many real-world networks. Previous researches showed that the strong disassortativity between the hub-nodes on all length scales was the key principle that gave rise to the fractal architecture of networks. Although fractal property emerged in some models, there were few researches about the fractal growth model and quantitative analyses about the strength of the disassortativity for fractal model. In this paper, we proposed a novel inverse renormalization method, named Box-based Preferential Attachment (BPA), to build the fractal growth models in which the Preferential Attachment was performed at box level. The proposed models provided a new framework that demonstrated small-world-fractal transition. Also, we firstly demonstrated the statistical characteristic of connection patterns of the hubs in fractal networks. The experimental results showed that, given proper growing scale and added edges, the proposed models could clearly show pure small-world or pure fractal or both of them. It also showed that the hub connection ratio showed normal distribution in many real-world networks. At last, the comparisons of connection pattern between the proposed models and the biological and technical networks were performed. The results gave useful reference for exploring the growth principle and for modeling the connection patterns for real-world networks.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,