Article ID Journal Published Year Pages File Type
5103380 Physica A: Statistical Mechanics and its Applications 2017 14 Pages PDF
Abstract
The leader selection problem refers to determining a predefined number of agents as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. The original leader selection problem is formulated as a non-convex optimization problem where matrix variables are involved. By relaxing the constraints, a convex optimization model can be obtained. By introducing a chain rule of matrix differentiation, we can obtain the gradient of the cost function which consists matrix variables. We develop a “revisited projected gradient method” (RPGM) and a “probabilistic projected gradient method” (PPGM) to solve the two formulated convex and non-convex optimization problems, respectively. The convergence property of both methods is established. For convex optimization model, the global optimal solution can be achieved by RPGM, while for the original non-convex optimization model, a suboptimal solution is achieved by PPGM. Simulation results ranging from the synthetic to real-life networks are provided to show the effectiveness of RPGM and PPGM. This works will deepen the understanding of leader selection problems and enable applications in various real-life distributed control problems.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , ,