Article ID Journal Published Year Pages File Type
510455 Computers & Structures 2011 14 Pages PDF
Abstract

A unified approach to nonlinear buckling fiber angle optimization of laminated composite shell structures is presented. The method includes loss of stability due to bifurcation and limiting behaviour. The optimization formulation is formulated as a mathematical programming problem and solved using gradient-based techniques. Buckling of a well-known cylindrical shell benchmark problem is studied and the solutions found in literature are proved to be incorrect. The nonlinear buckling optimization formulation is benchmarked against the traditional linear buckling optimization formulation through several numerical optimization cases of a composite cylindrical shell panel which clearly illustrates the advantage and potential of the presented approach.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,