Article ID Journal Published Year Pages File Type
510574 Computers & Structures 2006 11 Pages PDF
Abstract

This paper presents a mathematical modelling and numerical simulation method for three-dimensional smart tubular 1(0)-3 composites based on a representative composite volume (RCV) approach. For the problems we consider, numerical results show that the maximum mechanical displacement varies linearly with the applied electrical potential and grows nonlinearly with increasing the RCV height. Further, we observe that decreasing the distance between the inner and outer radii results in increasing the maximum displacement. This refers to composites with large Young’s modulus of the polymer phase, whereas for “soft” polymers (i.e. for Young’s modulus of the polymers of order less than GPa) no particular ‘rule’ is evident, in which case the Poisson’s ratio is the most important parameter.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,