Article ID Journal Published Year Pages File Type
5114336 Energy for Sustainable Development 2017 13 Pages PDF
Abstract
Thermoelectric generators (TEGs) are used for converting heat into electricity. One of the challenges behind TEG is that the power generated is unstable and therefore needs proper power conditioning mechanism before it is supplied to the load. Moreover, it is necessary to track the maximum power point (MPP) so that maximum power is always extracted from TEG devices. The objective of this work is to analyse the performance of dc-dc converter with maximum power point tracking (MPPT) enabled by incremental conductance (IC) method. The results of the IC based MPPT approach have been compared with those of perturb and observe (P&O) based MPPT from a previous researcher. The results indicate that the IC based MPPT approach is able to track the MPP but with relatively lower efficiencies than the P&O based MPPT method. The matching efficiency within a temperature range of 200 °C-300 °C is in the range of 99.92%-99.95% for P&O and 99.46%-99.97% for IC method. However IC based MPPT method has higher voltage gain and converter efficiency than the P&O based MPPT method. Therefore, dc-dc converters are able to improve the steady state performance of TEG system as well as boosting the voltage to the desired level, hence improving the overall performance of TEG system.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,