Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
511458 | Computers & Structures | 2007 | 11 Pages |
Large deformation processes are inherently complex considering the non-linear phenomena that need to be accounted for. Stochastic analysis of these processes is a formidable task due to the numerous sources of uncertainty and the various random input parameters. As a result, uncertainty propagation using intrusive techniques requires tortuous analysis and overhaul of the internal structure of existing deterministic analysis codes. In this paper, we present an approach called non-intrusive stochastic Galerkin (NISG) method, which can be directly applied to presently available deterministic legacy software for modeling deformation processes with minimal effort for computing the complete probability distribution of the underlying stochastic processes. The method involves finite element discretization of the random support space and piecewise continuous interpolation of the probability distribution function over the support space with deterministic function evaluations at the element integration points. For the hyperelastic–viscoplastic large deformation problems considered here with varying levels of randomness in the input and boundary conditions, the NISG method provides highly accurate estimates of the statistical quantities of interest within a fraction of the time required using existing Monte Carlo methods.