Article ID Journal Published Year Pages File Type
512179 Engineering Analysis with Boundary Elements 2015 7 Pages PDF
Abstract

Wave transition due to coinciding with an array of truncated barrier is simulated by a fully nonlinear three dimensional potential Numerical Wave Tank (NWT). The potential theory is used to describe kinematics of the flow field and the isoparametric Boundary Element Method (BEM) is employed to solve the boundary value problem. The Mixed Eulerian–Lagrangian (MEL) approach and fourth order Runge–Kutta time integration applied for time-marching scheme to model the temporary and fully nonlinear free surface. At each time step, solution of Laplace equation in the Eulerian frame is applied to the fully nonlinear free surface conditions in the Lagrangian manner to achieve the new positions and the boundary value of fluid particles for the next time step. Normal flux of potential wave theory is specified on the inflow boundary to stimulate fluid field and to propagate the nonlinear wave along the tank. To minimize the reflected wave energy into the computational domain, two artificial sponger layers are adopted on the free surface at the both ends of the numerical wave tank. Accuracy and convergence of the present numerical procedure is conducted. Also, interaction between a near trapped mode array of truncated barriers and nonlinear input wave is simulated.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,