Article ID Journal Published Year Pages File Type
512418 Engineering Analysis with Boundary Elements 2014 11 Pages PDF
Abstract

This paper presents a convolution quadrature time-domain boundary element method for 2-D and 3-D elastic wave propagation in general anisotropic solids. A boundary element method (BEM) has been developed as an effective and accurate numerical approach for wave propagation problems. However, a conventional time-domain BEM has a critical disadvantage; it produces unstable numerical solutions for a small time increment. To overcome this disadvantage, in this paper, a convolution quadrature method (CQM) is applied to the time-discretization of boundary integral equations in 2-D and 3-D general anisotropic solids. As numerical examples, the problems of elastic wave scattering by a cavity are solved to validate the present method.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,