Article ID Journal Published Year Pages File Type
5127002 Transportation Research Part B: Methodological 2017 20 Pages PDF
Abstract

•Develop a new nested weibit model for mode choice.•Adopt a recently developed path-size weibit model for route choice.•Develop a new combined modal split and traffic assignment (CMSTA) model for green transportation systems.•Provide a weibit-based equivalent mathematical programming formulation for the CMSTA model.•Present numerical results for assessing go-green strategies.

Reduction of vehicle emissions is a major component of sustainable transportation development. The promotion of green transport modes is a worthwhile and sustainable approach to change transport mode shares and to contribute to healthier travel choices. In this paper, we provide an alternate weibit-based model for the combined modal split and traffic assignment (CMSTA) problem that explicitly considers both similarities and heterogeneous perception variances under congestion. Instead of using the widely-adopted Gumbel distribution, both mode and route choice decisions are derived from random utility theory using the Weibull distributed random errors. At the mode choice level, a nested weibit (NW) model is developed to relax the identical perception variance of the logit model. At the route choice level, the recently developed path-size weibit (PSW) is adopted to handle both route overlapping and route-specific perception variance. Further, an equivalent mathematical programming (MP) formulation is developed for this NW-PSW model as a CMSTA problem under congested networks. Some properties of the proposed models are also rigorously proved. Using this alternate weibit-based NW-PSW model, different go-green strategies are quantitatively evaluated to examine (a) the behavioral modeling of travelers' mode shift between the private motorized mode and go-green modes and (b) travelers' route choice with consideration of both non-identical perception variance and route overlapping. The results reveal that mode shares and route choices from the NW-PSW model can better reflect the changes in model parameters and in network characteristics than the traditional logit and extended logit models.

Related Topics
Social Sciences and Humanities Decision Sciences Management Science and Operations Research
Authors
, ,