Article ID Journal Published Year Pages File Type
5129435 Journal of Multivariate Analysis 2017 14 Pages PDF
Abstract

The purpose of this paper is to derive sharp conditions for the asymptotic normality of a discrete Fourier transform of a functional time series (Xt:t≥1) defined, for all θ∈(−π,π], by Sn(θ)=Xte−iθ+⋯+Xte−inθ. Assuming that the function space is a Hilbert space we prove that a Central Limit Theorem (CLT) holds for almost all frequencies θ if the process (Xt) is stationary, ergodic and purely non-deterministic. Under slightly stronger assumptions we formulate versions which provide a CLT for fixed frequencies as well as for Sn(θn), when θn→θ0 is a sequence of fundamental frequencies. In particular we also deduce the regular CLT (θ=0) under new and very mild assumptions. We show that our results apply to the most commonly studied functional time series.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,