Article ID Journal Published Year Pages File Type
5129587 Journal of Statistical Planning and Inference 2017 15 Pages PDF
Abstract

•Definition of a prior for Bayesian quantum tomography. This prior can be easily extended to any dimension.•Best up-to-date estimation rates in the case of a low-rank density matrix.•Good experimental results; clear improvement over the direct inversion method.

Quantum state tomography, an important task in quantum information processing, aims at reconstructing a state from prepared measurement data. Bayesian methods are recognized to be one of the good and reliable choices in estimating quantum states (Blume-Kohout, 2010). Several numerical works showed that Bayesian estimations are comparable to, and even better than other methods in the problem of 1-qubit state recovery. However, the problem of choosing prior distribution in the general case of n qubits is not straightforward. More importantly, the statistical performance of Bayesian type estimators has not been studied from a theoretical perspective yet. In this paper, we propose a novel prior for quantum states (density matrices), and we define pseudo-Bayesian estimators of the density matrix. Then, using PAC-Bayesian theorems (Catoni, 2007), we derive rates of convergence for the posterior mean. The numerical performance of these estimators is tested on simulated and real datasets.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,