Article ID Journal Published Year Pages File Type
5129844 Statistics & Probability Letters 2017 4 Pages PDF
Abstract

Let γ denote any centered Gaussian measure on Rd. It is proved that for any closed convex sets A and B in Rd, and any closed convex cones C and D in Rd, if D⊇C∘, where C∘ is the polar cone of C, then γ((A+C)∩(B+D))≤γ(A+C)⋅γ(B+D), and γ((A+C)∩(B−D))≥γ(A+C)⋅γ(B−D). As an application, this new inequality is used to bound the asymptotic posterior distributions of likelihood ratio statistics for convex cones.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,