Article ID Journal Published Year Pages File Type
5130015 Stochastic Processes and their Applications 2016 15 Pages PDF
Abstract

Two-component mixture priors provide a traditional way to induce sparsity in high-dimensional Bayes models. However, several aspects of such a prior, including computational complexities in high-dimensions, interpretation of exact zeros and non-sparse posterior summaries under standard loss functions, have motivated an amazing variety of continuous shrinkage priors, which can be expressed as global-local scale mixtures of Gaussians. Interestingly, we demonstrate that many commonly used shrinkage priors, including the Bayesian Lasso, do not have adequate posterior concentration in high-dimensional settings.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , , ,