Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5131269 | Analytica Chimica Acta | 2017 | 10 Pages |
â¢Phenyltrichlorosilane modified magnesium oxide microsphere (PTS-MgO) was presented.â¢PTS-MgO was used for a new sorbent material in matrix solid-phase dispersion.â¢The sorbent showed high selectivity for DL-PAHs with satisfactory recoveries obtained.â¢The method was applied to the extraction of dioxin-like PAHs from soil samples.
Magnesium oxide microspheres functionalized with phenyltrichlorosilane (PTS-MgO) were synthesized by surface modification through silanization reaction, which was confirmed by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA) and N2 adsorption-desorption. The result indicated that PTS-MgO not only possessed the ability of enhancing the retention with PAHs, but also weakening the interference from chlorinated compounds. As a sorbent for the matrix solid-phase dispersion (MSPD) extraction, PTS-MgO was used to selectively extract seven dioxin-like polycyclic aromatic hydrocarbons (DL-PAHs) from soil samples. Various parameters affecting the recoveries of seven DL-PAHs were investigated and optimized, such as sorbent/sample mass ratio, grinding time, rinsing and eluting conditions. Under the optimized conditions, the developed method combining MSPD with HPLC-FLD exhibited good sensitivity (0.02-0.12 ng gâ1 detection of limits) and linearity (linear correlation coefficient greater than 0.9997). Satisfactory recoveries with DL-PAHs spiked at two levels (10 and 80 ng gâ1) were obtained in the range of 72.2-113.1% with RSD < 9.6%, indicating that PTS-MgO had a potential in MSPD extraction of DL-PAHs in soils. Additionally, the proposed MSPD-HPLC-FLD method was also verified by detecting seven DL-PAHs in the standard reference soil. Based on the developed method, DL-PAHs in soil samples were detected with the concentration ranging from 70.08 to 555.05 ng gâ1 dry weight (dw). The total toxic equivalency quotients (TEQ) of seven DL-PAHs varied from 9.93 to 143.94 ng TEQ/g dw.
Graphical abstractDownload high-res image (309KB)Download full-size image