Article ID Journal Published Year Pages File Type
513209 Engineering Analysis with Boundary Elements 2009 8 Pages PDF
Abstract

Potential difficulties arise in connection with various physical and engineering problems in which the functions satisfy a given partial differential equation and particular boundary conditions. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, they usually cannot be solved with analytical solutions. The element-free Galerkin (EFG) method is a meshless method for solving partial differential equations on which the trial and test functions employed in the discretization process result from moving least-squares (MLS) interpolants. In this paper, by using the weighted orthogonal basis function to construct the MLS interpolants, we derive the formulae of an improved EFG (IEFG) method for two-dimensional potential problems. There are fewer coefficients in the improved MLS (IMLS) approximation than in the MLS approximation, and in the IEFG method fewer nodes are selected in the entire domain than in the conventional EFG method. Hence, the IEFG method should result in a higher computing speed.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,