Article ID Journal Published Year Pages File Type
513447 Engineering Analysis with Boundary Elements 2009 15 Pages PDF
Abstract

In this paper, a meshless numerical algorithm is developed for the solution of multi-dimensional wave equations with complicated domains. The proposed numerical method, which is truly meshless and quadrature-free, is based on the Houbolt finite difference (FD) scheme, the method of the particular solutions (MPS) and the method of fundamental solutions (MFS). The wave equation is transformed into a Poisson-type equation with a time-dependent loading after the time domain is discretized by the Houbolt FD scheme. The Houbolt method is used to avoid the difficult problem of dealing with time evolution and the initial conditions to form the linear algebraic system. The MPS and MFS are then coupled to analyze the governing Poisson equation at each time step. In this paper we consider six numerical examples, namely, the problem of two-dimensional membrane vibrations, the wave propagation in a two-dimensional irregular domain, the wave propagation in an L-shaped geometry and wave vibration problems in the three-dimensional irregular domain, etc. Numerical validations of the robustness and the accuracy of the proposed method have proven that the meshless numerical model is a highly accurate and efficient tool for solving multi-dimensional wave equations with irregular geometries and even with non-smooth boundaries.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,