Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
513448 | Engineering Analysis with Boundary Elements | 2007 | 10 Pages |
There exist nearly singular integrals for boundary layer effect problem and thin body effect problem in the boundary element method (BEM). A new completely analytical integral algorithm is proposed and applied to evaluate the nearly singular integrals in the BEM for two-dimensional orthotropic potential problems of thin bodies. The completely analytical integral formulas are derived with integration by parts for the linear boundary interpolation. The present algorithm applies these analytical formulas to deal with the nearly singular integrals. The unknown potentials and fluxes at boundary nodes are firstly calculated accurately and then the physical quantities at the interior points are computed. Two benchmark numerical examples on heat conduction demonstrate that the present algorithm can handle thin structures with the thickness-to-length ratio down to 1.E−08. This indicates that the BEM is especially accurate and efficient for numerical analysis of thin body problems.