Article ID Journal Published Year Pages File Type
513469 Engineering Analysis with Boundary Elements 2008 10 Pages PDF
Abstract

The topological derivative gives the sensitivity of the problem when the domain under consideration is perturbed by the introduction of a hole. Alternatively, this same concept can also be used to calculate the sensitivity of the problem when, instead of a hole, a small inclusion is introduced at a point in the domain. In the present paper we apply the Topological-Shape Sensitivity Method to obtain the topological derivative of inclusion in two-dimensional linear elasticity, adopting the total potential energy as the cost function and the equilibrium equation as a constraint. For the sake of completeness, initially we present a brief description of the Topological-Shape Sensitivity Method. Then, we calculate the topological derivative for the problem under consideration in two steps: firstly we perform the shape derivative and next we calculate the limit when the perturbation vanishes using classical asymptotic analysis around a circular inclusion. In addition, we use this information as a descent direction in a topology design algorithm which allows to simultaneously remove and insert material. Finally, we explore this feature showing some numerical experiments of structural topology design within the context of two-dimensional linear elasticity problem.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,