| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 513503 | Engineering Analysis with Boundary Elements | 2007 | 16 Pages |
Abstract
The alternating iterative algorithm proposed by Kozlov et al. [An iterative method for solving the Cauchy problem for elliptic equations. USSR Comput Math Math Phys 1991;31:45–52] for obtaining approximate solutions to the Cauchy problem in two-dimensional anisotropic elasticity is analysed and numerically implemented using the boundary element method (BEM). The ill-posedness of this inverse boundary value problem is overcome by employing an efficient regularising stopping. The numerical results confirm that the iterative BEM produces a convergent and stable numerical solution with respect to increasing the number of boundary elements and decreasing the amount of noise added into the input data.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Lucia Comino, Liviu Marin, Rafael Gallego,
