Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
513614 | Engineering Analysis with Boundary Elements | 2006 | 12 Pages |
This paper describes the applications of the method of fundamental solutions (MFS) for 2D and 3D unsteady Stokes equations. The desired solutions are represented by a series of unsteady Stokeslets, which are the time-dependent fundamental solutions of the unsteady Stokes equations. To obtain the unknown intensities of the fundamental solutions, the source points are properly located in the time–space domain and then the initial and boundary conditions at the time–space field points are collocated. In the time-marching process, the prescribed collocation procedure is applied in a time–space box with suitable time increment, thus the solutions are advanced in time. Numerical experiments of unsteady Stokes problems in 2D and 3D peanut-shaped domains with unsteady analytical solutions are carried out and the effects of time increments and source points on the solution accuracy are studied. The time evolution of history of numerical results shows good agreement with the analytical solutions, so it demonstrates that the proposed meshless numerical method with the concept of space–time unification is a promising meshless numerical scheme to solve the unsteady Stokes equations. In the spirit of the method of fundamental solutions, the present meshless method is free from numerical integrations as well as singularities in the spatial variables.