Article ID Journal Published Year Pages File Type
513704 Engineering Analysis with Boundary Elements 2006 13 Pages PDF
Abstract

An innovative computational model is presented for the large eddy simulation (LES) modeling of multi-dimensional unsteady turbulent flow problems in external flow field. Based on the LES principles, the model uses a pressure projection method to solve the Navier–Stokes equations in transient condition. The turbulent motion is simulated by Smagorinsky sub-grid scale (SGS) eddy viscosity model. The momentum equation of the flow motion is solved using a three-step finite element method (FEM). The external flow field is simulated using a boundary element method (BEM) by solving a pressure Poisson equation that assumes the pressure as zero at the infinity. Through extracting the boundary effects on a specified finite computational domain, the model is able to solve the infinite boundary value problems. The present model is used to simulate the flows past a two-dimensional square rib and a three-dimensional cube at high Reynolds number. The simulation results are found to be reasonable and comparable with other models available in the literature even for coarse meshes.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,