Article ID Journal Published Year Pages File Type
513715 Engineering Analysis with Boundary Elements 2006 15 Pages PDF
Abstract

This paper presents a semi-analytical method for solving the problem of an isotropic elastic half-plane containing a large number of randomly distributed, non-overlapping, circular holes of arbitrary sizes. The boundary of the half-plane is assumed to be traction-free and a uniform far-field stress acts parallel to that boundary. The boundaries of the holes are assumed to be either traction-free or subjected to constant normal pressure. The analysis is based on solution of complex hypersingular integral equation with the unknown displacements at each circular boundary approximated by a truncated complex Fourier series. A system of linear algebraic equations is obtained by using a Taylor series expansion. The resulting semi-analytical method allows one to calculate the elastic fields everywhere in the half-plane. Several examples available in the literature are re-examined and corrected, and new benchmark examples with multiple holes are included to demonstrate the effectiveness of the approach.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,