Article ID Journal Published Year Pages File Type
5145158 International Journal of Hydrogen Energy 2017 9 Pages PDF
Abstract
To achieve the better electrocatalytic activity and stability of Pd-base catalysts for ethylene glycol and glycerol oxidation reactions, a novel Pd-base binary PdCo oxides nanoparticles (PdPdO-CoOx) was synthesized by in-situ oxidation of PdCo precursor. The strategy was simple, mild, green and efficient. The prepared nanoparticles exhibited a mutually connected, fused irregular nanoparticles in TEM. The as-synthesized PdPdO-CoOx (1:4) nanoparticles displayed prominent catalytic activity (5.82 A mgPd−1 for ethylene glycol and 5.16 A mgPd−1 for glycerol) for ethylene glycol and glycerol oxidation reactions in alkaline solution compared to the commercial Pt/C (1.64 A mgPt−1 for ethylene glycol and 1.48 A mgPt−1 for glycerol) catalyst. The improved electrocatalytic activity of PdPdO-CoOx catalyst mainly ascribes to the producing Strong Metal-Support Interactions (SMSI) between PdO-CoOx and Pd nanoparticles, the synergistic effect between PdO and CoOx and the presence of CoOx promoved hydroxyl adsorption at lower potentials. Combined with the simple synthetic method, lower cost and good performance, PdPdO-CoOx is a promising catalyst for direct fuel cells.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , ,