| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 5145300 | International Journal of Hydrogen Energy | 2017 | 11 Pages |
Abstract
This paper presents a methodology for modeling microstructures of fibrous porous media with curved fibers. The developed methodology utilizes implicit periodic surface model coupled with the genetic algorithm (GA) optimization to construct the porous microstructures. The fibers profile is represented by the periodic implicit surfaces and their orientation and curvature are determined by GA optimization. To reconstruct the microstructures with higher resemblance to the actual porous media GA is utilized to minimize the fibers stored strain energy and their intersection volumes. Coupling the image processing techniques to the geometry construction procedure the morphological and transport properties of the constructed microstructures are also determined. To verify the feasibility and the accuracy of the proposed methodology the microstructure of Freudenberg H2315 GDL is constructed and characterized. The presented methodology enables a parametric design approach. Thus, the effects of the microstructure's properties e.g., fibers diameter, fibers orientation and porosity of the porous structure on the transport properties of the fibrous media are investigated.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Sima Didari, Yan Wang, Tequila A.L. Harris,
