Article ID Journal Published Year Pages File Type
5145561 International Journal of Hydrogen Energy 2017 9 Pages PDF
Abstract
A nanoporous metal-organic framework material, exhibiting an IRMOF-1 type crystalline structure, was prepared by following a direct solvothermal synthesis approach, using zinc nitrate and terephthalic acid as precursors and dimethylformamide as solvent, combined with supercritical CO2 activation and vacuum outgassing procedures. A series of advanced characterization methods were employed, including scanning electron microscopy, Fourier-transform infrared radiation spectroscopy and X-ray diffraction, in order to study the morphology, surface chemistry and structure of the IRMOF-1 material directly upon its synthesis. Porosity properties, such as Brunauer-Emmet-Teller (BET) specific area (∼520 m2/g) and micropore volume (∼0.2 cm3/g), were calculated for the activated sample based on N2 gas sorption data collected at 77 K. The H2 storage performance was preliminary assessed by low-pressure (0-1 bar) H2 gas adsorption and desorption measurements at 77 K. The activated IRMOF-1 material of this study demonstrated a fully reversible H2 sorption behavior combined with an adequate gravimetric H2 uptake relative to its BET specific area, thus achieving a value of ∼1 wt.% under close-to-atmospheric pressure conditions.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , , , ,