Article ID Journal Published Year Pages File Type
5145915 International Journal of Hydrogen Energy 2017 10 Pages PDF
Abstract
This paper investigates numerically the problem of unsteady magnetohydrodynamic nanofluid flow and heat transfer between parallel plates due to the normal motion of the porous upper plate. The governing equations are solved via the fourth-order Runge-Kutta method. Different kind of nanoparticles is examined. The effects of kind of nanoparticle, nanofluid volume fraction, expansion ratio, Hartmann number, Reynolds number on velocity and temperature profiles are considered. Also effect of different types of nanoparticles is examined. Results indicate that velocity decreases with increase of Hartmann number due to effect of Lorentz forces. Rate of heat transfer increase with increase of nanofluid volume fraction, Hartmann number and Reynolds number but it decreases with increase of expansion ratio. Also it can be found that choosing copper as a nanoparticle leads to highest enhancement.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,