Article ID Journal Published Year Pages File Type
5146209 International Journal of Hydrogen Energy 2017 13 Pages PDF
Abstract
In this paper, the nanocrystalline and amorphous PrMg11Ni + x wt.% Ni (x = 100, 200) alloys were synthesized by mechanical milling. The gaseous and electrochemical hydrogen storage performances were studied in detail. The results reveal that increasing Ni content facilitates the glass forming of the alloys, and it significantly improves the gaseous and electrochemical hydrogen storage kinetics performance. Furthermore, milling time varying significantly affects the hydrogen storage properties of the alloys. The hydrogen capacity of the alloys first increases and then decreases with milling time prolonged. The hydriding rate and high-rate discharge ability (HRD) of the as-milled alloys have maximum values with milling time varying. But dehydriding rate always increases with milling time prolonged. The improved gaseous hydrogen storage kinetics of alloys are convinced to be ascribed to a reduction in hydrogen desorption activation energy caused by increasing Ni content and prolonging milling time.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,