Article ID Journal Published Year Pages File Type
5146263 International Journal of Hydrogen Energy 2017 9 Pages PDF
Abstract
The reactions of biomass char CO2-gasification within granulated blast furnace slag (BFS) were systematically conducted by the non-isothermal program using a thermogravimetric analyzer. At the same time during reaction proceeded, the conversion of biomass char CO2-gasification reaction increased with the increasing heating rate. However, at the same temperature during reaction proceeded, the conversion of biomass char CO2-gasification reaction decreased with the increasing heating rate. The granulated BFS could be used as a catalyst in the biomass char CO2-gasification reaction and its catalytic effect became more obvious with the increasing content of BFS in the mixture. The A4 model (nuclei production (m = 4) model) selected through the novel two-step method firstly proposed in the study was the best match with all the gasification reactions. The activation energy was from 52.75 kJ/mol to 64.42 kJ/mol and was lower with the increase of heating rate and the content of BFS in the mixture. The kinetic equations of biomass char CO2-gasification reaction within granulated BFS were developed through the selected model and calculated kinetic parameters.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,