Article ID Journal Published Year Pages File Type
5146292 International Journal of Hydrogen Energy 2017 8 Pages PDF
Abstract
Counter-flowing thermal fluids are conducive to generate a homogeneous temperature difference on thermoelectric (TE) generator. This study allowed the hot and cold fluids of having constant inlet temperature to flow in the opposite, and examined TE performance of module at different flow rates. The results show that TE performance gradually increases with flow rate in the initial stage of fluid flow, and reaches a transient peak value after the module surfaces are completely covered by thermal fluids, and then tends to be stable. High flow rate leads to larger performance and reduces the time of achieving them. Effect of flow rate on stable performance is slightly more than that of inlet temperature of thermal fluids, which makes regulating the flow rate to be a feasible way to harvest more heat for TE conversion. Module features present a specific trend and provide the supports for the benefit of counter-flowing thermal fluids.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,