Article ID Journal Published Year Pages File Type
5147386 International Journal of Hydrogen Energy 2016 10 Pages PDF
Abstract
This paper presents the thermodynamic analysis of thermally coupling steam and tri-reforming processes using a bio-oil aqueous fraction for hydrogen production. The total energy efficiency is investigated to evaluate the overall performance of the proposed system. It is found that the operating temperature, steam-to-bio-oil feed (S/F) ratio and split ratio of waste gas recovery have a positive effect on hydrogen yield; the optimal values are as follows: operating temperature of the steam reforming, 650 °C; tri-reforming operating temperature, 580 °C; S/F ratio, 6; and split ratio, 0.5. However, an increase in such parameters increases the energy requirement for the steam reformer. The new proposed system combining thermally coupled steam and tri-reforming processes with a membrane water gas shift reactor offers higher energy efficiency than a conventional steam reforming process.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,